Ir al contenido principal

Funciones

Una función, en matemáticas, es el término usado para indicar la relación o correspondencia entre dos o más cantidades. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes para designar una potencia xn de la variable x. En 1694 el matemático alemán Gottfried Wilhelm Leibniz utilizó el término para referirse a varios aspectos de una curva, como su pendiente. Hasta recientemente, su uso más generalizado ha sido el definido en 1829 por el matemático alemán, J.P.G. Lejeune-Dirichlet (1805-1859), quien escribió: "Una variable es un símbolo que representa un número dentro de un conjunto de ello.  Dos variables X y Y están asociadas de tal forma que al asignar un valor a X entonces, por alguna regla o correspondencia, se asigna automáticamente un valor a Y, se dice que Y es una función (unívoca) de X.  La variable X, a la que se asignan libremente valores, se llama variable independiente, mientras que la variable Y, cuyos valores dependen de la X, se llama variables dependientes.  Los valores permitidos de X constituyen el dominio de definición de la función y los valores  que toma Y constituye su recorrido".
Una función f de A en B es una relación que le hace corresponder a cada elemento x E A uno y solo un elemento y E B, llamado imagen de x por f, que se escribe y=f (x). En símbolos, f: A à B
Es decir que para que una relación de un conjunto A en otro B sea función, debe cumplir dos condiciones, a saber:
Todo elemento del conjunto de partida A debe tener imagen.
La imagen de cada elemento x E A debe ser única. Es decir, ningún elemento del dominio puede tener más de una imagen.
El conjunto formado por todos los elementos de B que son imagen de algún elemento del dominio se denomina conjunto imagen o recorrido de f.
Observaciones:
En una función f: Aà B todo elemento x E A tiene una y solo una imagen y E B.
Un elemento y E B puede:
No ser imagen de ningún elemento x E A
Ser imagen de un elemento x E A
Ser imagen de varios elementos x E A.
La relación inversa f-1 de una función f puede no ser una función.
Formas de expresión de una función
Mediante el uso de tablas:
X
Y
-1
0
½
1
2
1
0
¼
1
4


Leer más: http://www.monografias.com/trabajos7/mafu/mafu.shtml#fun#ixzz4m169vkge

Comentarios

Entradas populares de este blog

Relación de Orden

En primer lugar damos la definición de relación de orden. Definición 1    Una relación   es de orden si es reflexiva, antisimétrica y transitiva. Ejemplos típicos de relaciones de orden, de entre los ya estudiados anteriormente en esta asignatura o en cursos precedentes, podemos citar la implicación lógica entre clases de equivalencia de proposiciones lógicas, la contención entre conjuntos, la desigualdad entre números, la relación de divisibilidad entre números naturales, o la comparación de cardinales entre clases de conjuntos equipotentes (con el mismo cardinal). Las relaciones de orden se suelen llamar también de  orden parcial , en contraposición a lo que se llama  orden total , que definimos a continuación. Definición 2    Una relación de orden   se llama orden total si De todos los ejemplos citados anteriormente, solamente las desigualdades entre números y la comparación de cardinales son órdenes totales, el resto son s...

Propiedades de los operadores lógicos

Vamos a examinar las propiedades que tienen las operaciones lógicas antes definidas, para ello consideramos que p, q y r son tres proposiciones cualesquiera. Entonces tenemos los siguiente: 1)  Idempotencia  p˄p ≡ p p˅p ≡p 2)  Asociatividad  (p˄q)˄r ≡ p˄(q˄r) (p˅q)˅r ≡ p˅(q˅r) 3)  Conmutatividad  p˄q ≡ q˄p   p˅q ≡ q˅p 4)  Distributividad  p˄(q˅r) ≡ (p˄q)˅(p˄r)   p˅(q˄r) ≡ (p˅q)˄(p˅r) 5)  Identidad  p˄(F) ≡ (F) p˅(F) ≡ p p˄(V) ≡ p p˅(V) ≡ (V) 6)  Complemento  p˄(~p) ≡ (F) p˅(~p) ≡ (V) ~(~p) ≡ p ~(V) ≡ (F) ~(F) ≡ (V) 7) Condicionantes  (p → q) ≡ (~p ˅ q) (p → q) ≡ (~q → ~p) (p ↔ q) ≡ (p → q) ˄ (q → p) (p...

Geometría del Espacio

Geometría del Espacio SISTEMA TRIDIMENSIONAL Un objeto es tridimensional si tiene tres dimensiones. Es decir cada uno de sus puntos puede ser localizado especificando tres números dentro de un cierto rango. El sistema tridimensional mas usado en física (clásica) es el espacio: una dimension para el ancho, otra para la altura y otro para la profundidad. Para representarlo basta con el grafico de ejes cartesianos X,Y,Z. En las imágenes se puede observar el grafico con el que se representan los sistemas tridimensionales   SISTEMA DE COORDENADAS TRIDIMENSIONAL Un sistema cartesiano tridimensional está compuesto por tres planos perpendiculares entre sí, los cuales se interceptan en los ejes coordenados, los que se denominan ejesOx,Oy yOz. Las coordenadas de un puntoP son (x, y, z). La distancia signadas como x, y y z se llaman abscisa, ordenada y cota respectivamente. Los planos coordenados dividen al espacio en ocho regiones llamadas octantes. ...