Ir al contenido principal

Operadores Logicos

NEGACIÓN
Palabras conectivas: no, no es cierto que, no es verdad que, nunca, carece de, sin, etc.
Prefijos negativos: a, des, in, i.
Condición: lo V se transforma en F (y al revés) P -p

CONJUNCIÓN: .
Palabras conectivas: y, aunque, pero, mas, también, sin embargo, además, etc.
Condición: es V cuando ambas son V.
 Ejemplo:
Sea el siguiente enunciado "el auto enciende cuando tiene gasolina en el tanque y tiene corriente en la batería"
Sean:
p= tiene gasolina el tanque
q = tiene corriente la batería
r = el auto enciende = p ^ q
La conclusión resultante es que para que el auto encienda se debe tener gasolina en el tanque y corriente en la batería, sino se tiene una de estas dos condiciones el auto no arrancará.

DISYUNCIÓN INCLUSIVA
Una, otra o ambas a la vez. (y/o)
Palabras conectivas: o
Condición: es F cuando las dos son F.

 Ejemplo:
Sea el siguiente enunciado "Una persona puede entrar al cine si compra boleto u obtiene un pase"
Sean:
p= compra boleto
q = obtiene un pase
r = una persona entra al cine = p v q
La conclusión resultante es obvia, puesto que para entrar al cine es necesario tener por lo menos una de las dos condiciones: comprar un boleto o tener un pase, si se tiene ambas también se puede entrar, si no tengo ninguna de las dos alternativas entonces no se puede entrar al cine.

DISYUNCIÓN EXCLUSIVA
O una o la otra (NUNCA ambas juntas)
Palabras conectivas:
O ......... o .....
O bien .... o bien
.... a menos que ....
.... salvo que ......
Condición: es V cuando uno es V y el otro es F.

LA CONDICIONAL
Palabras conectivas: Si ..p.. entonces ..q.. Si ..p.. , ..q.. Cuando .......p............. , ......q.. Siempre ......p............. , ....q.. Es condición suficiente..p..para que..q.. .........q........ sólo si ......p....... Es condición necesaria...q..para que..p..
Condición: es falsa sólo si el antecedente (p) es V y el consecuente (q) es F.

 Ejemplo:
Si se tiene lo proposición "Si un cuerpo se calienta, entonces se dilata", se observa que estamos diciendo es que la primera proposición "si el cuerpo se calienta" implica a la segunda proposición " entonces se dilata", pero no se afirma que el antecedente es verdadero, ni el consecuente es verdadero, puede ser que el cuerpo no se calentó y el cuerpo se dilato por causa de otros factores ajenos a la temperatura, un golpe

LA BICONDICIONAL
Palabras conectivas: si y sólo si; cuando y sólo cuando; es equivalente a; es condición suficiente y necesaria para; etc.
Condición: son verdaderas si ambas proposiciones tienen el mismo "valor de verdad".

NEGACION CONJUNTA
Simbolizaciones equivalentes:
Palabras conectivas:
Ni.... ni.....
No.... ni.....
Condición: es V si sólo ambas proposiciones son F.

NEGACION CONJUNTA
Simbolizaciones equivalentes:
Palabras conectivas:
O no............... o no......
Es incompatible.... con.......
Condición: es F si las proposiciones son ambas.

fuente: http://anderstivogm.blogspot.com/2010/05/conectivos-logicos-y-tabla-de-verdad.html

Comentarios

Entradas populares de este blog

Relación de Orden

En primer lugar damos la definición de relación de orden. Definición 1    Una relación   es de orden si es reflexiva, antisimétrica y transitiva. Ejemplos típicos de relaciones de orden, de entre los ya estudiados anteriormente en esta asignatura o en cursos precedentes, podemos citar la implicación lógica entre clases de equivalencia de proposiciones lógicas, la contención entre conjuntos, la desigualdad entre números, la relación de divisibilidad entre números naturales, o la comparación de cardinales entre clases de conjuntos equipotentes (con el mismo cardinal). Las relaciones de orden se suelen llamar también de  orden parcial , en contraposición a lo que se llama  orden total , que definimos a continuación. Definición 2    Una relación de orden   se llama orden total si De todos los ejemplos citados anteriormente, solamente las desigualdades entre números y la comparación de cardinales son órdenes totales, el resto son s...

Propiedades de los operadores lógicos

Vamos a examinar las propiedades que tienen las operaciones lógicas antes definidas, para ello consideramos que p, q y r son tres proposiciones cualesquiera. Entonces tenemos los siguiente: 1)  Idempotencia  p˄p ≡ p p˅p ≡p 2)  Asociatividad  (p˄q)˄r ≡ p˄(q˄r) (p˅q)˅r ≡ p˅(q˅r) 3)  Conmutatividad  p˄q ≡ q˄p   p˅q ≡ q˅p 4)  Distributividad  p˄(q˅r) ≡ (p˄q)˅(p˄r)   p˅(q˄r) ≡ (p˅q)˄(p˅r) 5)  Identidad  p˄(F) ≡ (F) p˅(F) ≡ p p˄(V) ≡ p p˅(V) ≡ (V) 6)  Complemento  p˄(~p) ≡ (F) p˅(~p) ≡ (V) ~(~p) ≡ p ~(V) ≡ (F) ~(F) ≡ (V) 7) Condicionantes  (p → q) ≡ (~p ˅ q) (p → q) ≡ (~q → ~p) (p ↔ q) ≡ (p → q) ˄ (q → p) (p...

Geometría del Espacio

Geometría del Espacio SISTEMA TRIDIMENSIONAL Un objeto es tridimensional si tiene tres dimensiones. Es decir cada uno de sus puntos puede ser localizado especificando tres números dentro de un cierto rango. El sistema tridimensional mas usado en física (clásica) es el espacio: una dimension para el ancho, otra para la altura y otro para la profundidad. Para representarlo basta con el grafico de ejes cartesianos X,Y,Z. En las imágenes se puede observar el grafico con el que se representan los sistemas tridimensionales   SISTEMA DE COORDENADAS TRIDIMENSIONAL Un sistema cartesiano tridimensional está compuesto por tres planos perpendiculares entre sí, los cuales se interceptan en los ejes coordenados, los que se denominan ejesOx,Oy yOz. Las coordenadas de un puntoP son (x, y, z). La distancia signadas como x, y y z se llaman abscisa, ordenada y cota respectivamente. Los planos coordenados dividen al espacio en ocho regiones llamadas octantes. ...